• Home
  • Wireless sensor network
  • Published Issues

    OpenAccess
    • List of Articles Wireless sensor network

      • Open Access Article

        1 - Simplify Programming of TinyOS Applications for Wireless Sensor Networks
        M. Khezri M.  Sarram F. Adibnia
        Sensor node operating system provides a limited number of common services for developers to construct applications for wireless sensor networks. The sensor network community selected TinyOS as the de facto standard with most existing applications, libraries and device d More
        Sensor node operating system provides a limited number of common services for developers to construct applications for wireless sensor networks. The sensor network community selected TinyOS as the de facto standard with most existing applications, libraries and device drivers available for TinyOS. The programming model of TinyOS is event-based and is not easy to use. In this paper, we present a new task scheduler for TinyOS that includes a new computation concept, named Job. Jobs are a collaborative and non-preemptive way of multitasking. On the next step, we propose a programming model which combines the asynchronous basis of event-driven systems with a more classical programming interface for the developer. As a result, developer that uses such an interface in his application will be provided with the sequential view we wanted. This programming model is suitable for applications that have long running computations and there is a data flow dependency between different tasks. Manuscript profile
      • Open Access Article

        2 - A Comprehensive Method to Secure Time Synchronization in Wireless Sensor
        Z. Ahmadi  
        One of the important requirements of sensor networks is synchronization of the nodes. The importance of time in sensor networks causes the adversary tries to disturb time synchronization by altering and faking messages, delaying or replying them, compromising the nodes More
        One of the important requirements of sensor networks is synchronization of the nodes. The importance of time in sensor networks causes the adversary tries to disturb time synchronization by altering and faking messages, delaying or replying them, compromising the nodes and sending false messages via them. Up to now, there is no method that is able to provide both synchronization and security needs of sensor networks simultaneously. In this paper, we suggest a method that is capable to provide precise synchronization, along with low communication and computational overhead, low convergence time and high security against internal and external attacks. Simulation and analytic results show the preference of our method compared to other available methods. Manuscript profile
      • Open Access Article

        3 - Topology Control in Wireless Sensor Networks Using Two-Level Fuzzy Logic
        A. Abdi Seyedkolaei A. Zakerolhosseini
        Wireless sensor networks are a new generation of networks that from sensors uses to get information about itself environment and communication this sensors is as wireless. One of the issues that is very important in wireless sensor networks is Discussion reducing energy More
        Wireless sensor networks are a new generation of networks that from sensors uses to get information about itself environment and communication this sensors is as wireless. One of the issues that is very important in wireless sensor networks is Discussion reducing energy consumption and increasing network lifetime. Topology control is one of the methods to reduce energy consumption and increase the lifetime of the network. Since different methods of topology control, to reduce energy consumption and enhance the network lifetime is proposed that including them is the clustering and one of the most famous clustering methods is LEACH. In this paper, we try to present a new clustering method that is superior compared to leach and other improved methods after the LEACH. we use in our clustering method from two-level fuzzy logic that be causing reduce energy consumption and increase the network lifetime compared to other methods and to prove the superiority of our method compared with other methods, we present a comparison using MATLAB software. Manuscript profile
      • Open Access Article

        4 - PLAER: Penalty Base Learning Automata for Energy Aware Routing in WSN
        M. Parvizi Omran A. Moeni H. Haj Seyyed Javadi
        Sensors in WSN work with batteries that have limited energy capacity. Therefore, reduction in power consumption is a very important issue. In this paper, we present a new routing algorithm to reduce power consumption in wireless sensor networks. This algorithm deploys L More
        Sensors in WSN work with batteries that have limited energy capacity. Therefore, reduction in power consumption is a very important issue. In this paper, we present a new routing algorithm to reduce power consumption in wireless sensor networks. This algorithm deploys Learning automata in each node to find a suitable path for routing data packets. In order to aim this goal the algorithm uses penalty based approach in learning automata and considers energy level of nodes and latency of packet delivery as well. Performance of our new developed algorithm has been compared with LABER and BEAR protocols in OMNET++ simulator. Simulation results show that, in a network with static nodes, energy consumption and control packets reduce significantly and network lifetime increases in comparison with two other protocols. Manuscript profile
      • Open Access Article

        5 - A Goal-Based Approach for the Holonification of Holonic Multi-Agent Systems
        Ahmad Esmaeili N. Mozayani M. R. Jahed Motlagh
        Holonic structures are a hierarchical formation of holons that are developed and used for the purpose of restricting interaction domains, reducing uncertainty, or forming the high level goals of multi-agent systems, in such a way that the system benefits a high degree o More
        Holonic structures are a hierarchical formation of holons that are developed and used for the purpose of restricting interaction domains, reducing uncertainty, or forming the high level goals of multi-agent systems, in such a way that the system benefits a high degree of flexibility and dynamism in response to environmental changes. Although the holonic multi-agent systems are extensively used in modeling and solving complex problems, most of its prerequisites, like forming the body holons and dynamically controlling its structure, use very simple application-specific models. This is due to the immaturity of the research literatures in this field. In this article, an endeavor is made to propose a goal-based approach for the formation of holonic structures, using the concepts in social science and organizational theory. The use of concepts like role, skill, and goal structures, makes the proposed method possible to be used in wide range of applications. In order to demonstrate the capabilities of the method and also the way it can be applied in real world problems, a test bed based on the application of wireless sensor networks in object tracking is designed and presented. In this application, the sensors, which are distributed in the environment as simple agents, using holonic structures, are responsible for the track of any alien objects that enter and move in the environment. According to the empirical results of the simulations, the proposed holonic approach has provided successful performance in terms of tracking quality and energy consumption of the sensors. Manuscript profile
      • Open Access Article

        6 - A Novel Energy-Efficient Algorithm to Enhance Load Balancing and Lifetime of Wireless Sensor Networks
        S. Abbasi-Daresari J. Abouei
        Wireless senor networks (WSNs) are widely used for the monitoring purposes. One of the most challenges in designing these networks is minimizing the data transmission cost with accurate data recovery. Data aggregation using the theory of compressive sampling is an effec More
        Wireless senor networks (WSNs) are widely used for the monitoring purposes. One of the most challenges in designing these networks is minimizing the data transmission cost with accurate data recovery. Data aggregation using the theory of compressive sampling is an effective way to reduce the cost of communication in the sink node. The existing data aggregation methods based on compressive sampling require to a large number of nodes for each measurement sample leading to inefficient energy consumption in wireless sensor network. To solve this problem, we propose a new scheme by using sparse random measurement matrix. In this scheme, the formation of routing trees with low cost and fair distribution of load on the network significantly reduces energy consumption. Toward this goal, a new algorithm called “weighted compressive data gathering (WCDG)” is suggested in which by creating weighted routing trees and using the compressive sampling, the data belong to all of nodes of each path is aggregated and then, sent to the sink node. Considering the power control ability in sensor nodes, efficient paths are selected in this algorithm. Numerical results demonstrate the efficiency of the proposed algorithm with compared to the conventional data aggregation schemes in terms of energy consumption, load balancing, and network lifetime. Manuscript profile
      • Open Access Article

        7 - EBONC: A New Energy-Aware Clustering Approach Based on Optimum Number of Clusters for Mobile Wireless Sensor Networks
        N. Norouzy N. Norouzy M. Fazlali
        The energy constraint is one of the key challenges in wireless sensor networks that directly affects the network lifetime. Clustering the sensor nodes is one of the possible approaches to improving the energy efficiency by uniformly distributing the energy consumption a More
        The energy constraint is one of the key challenges in wireless sensor networks that directly affects the network lifetime. Clustering the sensor nodes is one of the possible approaches to improving the energy efficiency by uniformly distributing the energy consumption among the nodes. The number of appropriate clusters plays an important role in the network throughput. A Large number of clusters imply that packets pass more hops to reach the destination, which results in higher energy consumption. In this paper, we devise an energy and location aware clustering scheme that tries to optimize the number of required clusters. Moreover, the cluster heads are chosen according to their energy levels. The devised scheme partitions the network into concentric circles and calculates the appropriate number of clusters to provide an energy efficient network. A gossiping approach is used to provide information exchange mechanism. The performance of the devised approach is compared with ASH scheme. The simulation results show the network lifetime is improved from 25% to 40% in difference network scenarios. Manuscript profile
      • Open Access Article

        8 - Optimization of Adaptive Design of Wireless Sensor Networks Using Binary Quantum-Inspired Gravitational Search Algorithm
        M. Mirhosseini F. Barani H. Nezamabadi-pour
        In this paper, the binary quantum-inspired gravitational search algorithm is adapted to dynamically optimize the design of a wireless sensor network towards improving energy consumption and extending the lifetime of the network, so that the application-specific requirem More
        In this paper, the binary quantum-inspired gravitational search algorithm is adapted to dynamically optimize the design of a wireless sensor network towards improving energy consumption and extending the lifetime of the network, so that the application-specific requirements and communication constraints are fulfilled. The proposed approach is applied on a wireless sensor network used in the application of precise agriculture to monitor environmental conditions. This algorithm would present an optimal design detecting operational mode of each sensor including cluster head, high signal range, low signal range and inactive modes taking into consideration the constraints of the network. The simulation results indicate the most performance of the proposed method in comparison with binary genetic algorithm and particle swarm optimization. Manuscript profile
      • Open Access Article

        9 - An Efficient Hybrid Routing Protocol in Underwater Wireless Sensor Networks
        J. Tavakoli N. Moghim
        Underwater Wireless Sensor Network (UWSN) is a kind of sensor networks that their operational fields have been developed under water in recent decades, although these networks deal with lots of challenges due to lack of the GPS1. These networks encounter researchers wit More
        Underwater Wireless Sensor Network (UWSN) is a kind of sensor networks that their operational fields have been developed under water in recent decades, although these networks deal with lots of challenges due to lack of the GPS1. These networks encounter researchers with many challenges by some limitations like high propagation delay, low bandwidth, high bit error rate, movement, limited battery and memory. In comparison with terrestrial sensor networks, sensors in the UWSN consume energy more because they use acoustic technology to communicate. Motivation of this research is proposing a routing protocol for underwater systematic settings with a limited energy. The settled sensor nodes in underwater cannot communicate directly with nodes near surface, so they need prepared multi hop communications with a proper routing plan. In wireless sensor networks, node clustering is a common way to organize data traffic and to decrease intra-network communications along with scalability and load balance improvement plus reducing of overall energy consumption of system. Therefore, in this article a fuzzy clustering routing protocol with data aggregation and balanced energy consumption for UWSNs is proposed. Simulation results show that in the proposed protocol, energy consumption becomes more uniformly distributed in the network and average of the nodes' energy usage and number of routing packets decreases and finally, packet delivery ratio and throughput are improved in the network in comparison with DABC3 and IDACB4 algorithms. Manuscript profile
      • Open Access Article

        10 - Introducing a Fog-Based Algorithm for Routing in Wireless Sensor Networks
        E. Mirzavand Borujeni D. Rahbari M. Nickray
        Wireless sensor networks (WSNs) consist of thousands of small nodes. The small and inexpensive parts of these nodes have led to their widespread use in various fields. However, these networks have constraints on energy consumption, processing resources, and storage whic More
        Wireless sensor networks (WSNs) consist of thousands of small nodes. The small and inexpensive parts of these nodes have led to their widespread use in various fields. However, these networks have constraints on energy consumption, processing resources, and storage which have caused many studies to find solutions to reduce these constraints. In recent years, with the advent of the concept of Fog computing, many new and effective solutions are represented for routing in wireless sensor networks. Since in WSNs it is important to save alive nodes and reduce the energy consumption of nodes, fog computing is useful for this purpose. In most WSN routing protocols, the best way to send data to cluster heads and the base station is the major part of their studies. In the new protocols, the Fog computing have been used to find the best way. In these methods, we have seen decreasing energy consumption and increasing network lifetime. In this paper, we represent a fog-based algorithm for routing in WSNs. According to the simulation results, the proposed protocol improved energy consumption by 9% meanwhile the number of alive nodes is increased by 74%, compared to the reviewed method. Manuscript profile
      • Open Access Article

        11 - An Improved Grid-Based K-Coverage Technique Using Probabilistic Sensing Model for Wireless Sensor Networks
        Abdolreza Vaghefi Mahdi Mollamotalebi
        Coverage of an area, with one or multiple sensors, is one of the fundamental challenges in wireless sensor networks. Since a sensor life span is limited and reliable data is of great importance, sensitive applications like fire\leakage alarm systems, intrusion detection More
        Coverage of an area, with one or multiple sensors, is one of the fundamental challenges in wireless sensor networks. Since a sensor life span is limited and reliable data is of great importance, sensitive applications like fire\leakage alarm systems, intrusion detection, etc. need multiple sensors to cover the region of interest, which is called K-coverage. Most of the studies that have been carried out on K-coverage evaluation have used binary sensing model. In this paper, we propose a grid-based K-coverage evaluation technique using probabilistic sensing model to increase evaluation accuracy and decrease evaluation time. The proposed technique is implemented using NS-2 simulator, and its results are compared to probabilistic perimeter-based and binary grid-based techniques. The results indicate that the proposed technique improved accuracy by 14% and 24% compared to the mentioned techniques respectively. It also shows 7% decrease in evaluation time compared to probabilistic perimeter-based technique. Manuscript profile
      • Open Access Article

        12 - A Lightweight Intrusion Detection System Based on Two-Level Trust for Wireless Sensor Networks
        M. sadeghizade O. R. Marouzi
        Wireless sensor networks (WSNs) are one of the useful and attractive technologies that have received much attention in recent years. These networks have been used in a variety of applications, due to their ease of use and inexpensive deployment. Due to the criticality o More
        Wireless sensor networks (WSNs) are one of the useful and attractive technologies that have received much attention in recent years. These networks have been used in a variety of applications, due to their ease of use and inexpensive deployment. Due to the criticality of most applications of these networks, security is considered as one of the essential parameters of the quality of service (QoS), and thus Intrusion Detection System (IDS) is considered as a fundamental requirement for security in these networks. This paper provides a trust-based IDS to protect the WSN against all network layer and routing attacks based on the features extracted from them. Through simulations, the proposed IDS has been evaluated with all performance criteria. The results show that the proposed IDS, in comparison with existing works, which often focuses on a specific attack, covers all network layer and routing attacks in WSNs, and also, due to high detection accuracy, low false alarms rate, and low energy consumption is considered as a desirable and lightweight IDS for WSNs. Manuscript profile
      • Open Access Article

        13 - Propose a New Clustering Algorithm for Data Transmission in Wireless Sensor Networks by Using Apollonius Circle
        Sh. Pourbahrami E. Khaledi Alamdari L. Mohammad Khanli
        Wireless sensor networks, as an up-to-date technology, are one of the fastest growing technologies in the world today. Since these networks are used in military and agricultural environments as well as for observation of inaccessible environments, these networks need to More
        Wireless sensor networks, as an up-to-date technology, are one of the fastest growing technologies in the world today. Since these networks are used in military and agricultural environments as well as for observation of inaccessible environments, these networks need to be organized to achieve goals such as successful and timely sending of data to the main station. Clustering of wireless sensor networks is one of the most widely used methods for organizing these networks. Various ways to cluster these networks are provided, most of which are aimed at preventing energy loss and increasing the lifetime of sensor nodes. The thesis attempts to present a new geometric method for clustering the nodes of wireless sensor networks. In this geometric method, Apollonius circle is used to draw the abstract shape of the clusters and to assemble the nodes around the cluster head. Due to the high accuracy that it has in determining the fit of node distances, this circle can accurately assign nodes to cluster heads and prevent large single-node clusters or faraway nodes. In this algorithm, a main station, a number of nodes are used as a cluster header and a number of nodes as routers. The goal is to find the most accurate cluster heads and create clusters of high coverage in the network. The proposed method is implemented in MATLAB software and comparison of the results obtained from the view of successful data transmission, clustering accuracy, network lifetime and number of coverage areas, is showing accuracy of this method compared to optimal Leach algorithms and K-means presented in this field. Manuscript profile
      • Open Access Article

        14 - An Adaptive Multi-Objective Clustering Algorithm based on Auction_Prediction for Mobile Target Tracking in Wireless Sensor Network
        Roghieh Alinezhad Sepideh Adabi arash Sharifi
        One of the applications of sensor networks is to track moving target. In designing the algorithm for target tracking two issues are of importance: reduction of energy consumption and improvement of the tracking quality. One of the solutions for reduction of energy consu More
        One of the applications of sensor networks is to track moving target. In designing the algorithm for target tracking two issues are of importance: reduction of energy consumption and improvement of the tracking quality. One of the solutions for reduction of energy consumption is to form a tracking cluster. Two major challenges in formation of the tracking cluster are when and how it should be formed. To decrease the number of messages which are exchanged to form the tracking cluster an auction mechanism is adopted. The sensor’s bid in an auction is dynamically and independently determined with the aim of establishing an appropriate tradeoff between network lifetime and the accuracy of tracking. Furthermore, since the tracking cluster should be formed and activated before the target arrives to the concerned region (especially in high speed of target), avoidance from delay in formation of the tracking cluster is another challenge. Not addressing the mentioned challenge results in increased target missing rate and consequently energy loss. To overcome this challenge, it is proposed to predict the target’s position in the next two steps by using neural network and then, simultaneously form the tracking clusters in the next one and two steps. The results obtained from simulation indicate that the proposed algorithm outperforms AASA (Auction-based Adaptive Sensor Activation). Manuscript profile
      • Open Access Article

        15 - Optimal Resource Allocation in Multi-Task Software-Defined Sensor Networks
        S. A. Mostafavi M. Agha Sarram T. Salimian
        Unlike conventional wireless sensor networks which are designed for a specific application, Software-Defined Wireless Sensor Networks (SDSN) can embed multiple sensors on each node, defining multiple tasks simultaneously. Each sensor node has a virtualization program wh More
        Unlike conventional wireless sensor networks which are designed for a specific application, Software-Defined Wireless Sensor Networks (SDSN) can embed multiple sensors on each node, defining multiple tasks simultaneously. Each sensor node has a virtualization program which serves as a common communication infrastructure for several different applications. Different sensor applications in the network can have different target functions and decision parameters. Due to the resource constraints of sensor network nodes, the multiplicity and variety of tasks in each application, requirements for different levels of quality of service, and the different target functions for different applications, the problem of allocating resources to the tasks on the sensors is complicated. In this paper, we formulate the problem of allocating resources to the sensors in the SDSN with different objective functions as a multi-objective optimization problem and provide an effective solution to solve it. Manuscript profile
      • Open Access Article

        16 - DRSS-Based Localization Using Convex Optimization in Wireless Sensor Networks
        Hassan Nazari M. R. Danaee M. Sepahvand
        Localization with differential received signal strength measurement in recent years has been very much considered. Due to the fact that the probability density function is known for given observations, the maximum likelihood estimator is used. This estimator can be asym More
        Localization with differential received signal strength measurement in recent years has been very much considered. Due to the fact that the probability density function is known for given observations, the maximum likelihood estimator is used. This estimator can be asymptotically represented the optimal estimation of the location. After the formation of this estimator, it is observed that the corresponding cost function is highly nonlinear and non-convex and has a lot of minima, so there is no possibility of achieving the global minimum with Newton method and the localization error will be high. There is no analytical solution for this cost function. To overcome this problem, two methods are existed. First, the cost function is approximated by a linear estimator. But this estimator has poor accuracy. The second method is to replace the non-convex cost function with a convex one with the aid of convex optimization methods, in which case the global minimum is obtained. In this paper, we proposed new convex estimator to solve cost function of maximum likelihood estimator. The results of the simulations show that the proposed estimator has up to 20 percent performance improvement compared with existing estimators, moreover, the execution time of proposed estimator is 30 percent faster than other convex estimators. Manuscript profile
      • Open Access Article

        17 - Autonomous Controlling System for Structural Health Monitoring Wireless Sensor Networks
        Sahand Hashemi Seyyed Amir Asghari Mohammad Reza Binesh Marvasti
        Nowadays, office, residential, and historic buildings often require special monitoring. Obviously, such monitoring involves costs, errors and challenges. As a result of factors such as lower cost, broader application, and ease of installation, wireless sensor networks a More
        Nowadays, office, residential, and historic buildings often require special monitoring. Obviously, such monitoring involves costs, errors and challenges. As a result of factors such as lower cost, broader application, and ease of installation, wireless sensor networks are frequently replacing wired sensor networks for structural health monitoring. Depending on the type and condition of a structure, factors such as energy consumption and accuracy, as well as fault tolerance are important. Particularly when wireless sensor networks are involved, these are ongoing challenges which, despite research, have the possibility of being improved. Using the Markov decision process and wake-up sensors, this paper proposes an innovative approach to monitoring stable and semi-stable structures, reducing the associated cost and error over existing methods, and according to the problem, we have advantages both in implementation and execution. Thus, the proposed method uses the Markov decision process and wake-up sensors to provide a new and more efficient technique than existing methods in order to monitor the health of stable and semi-stable structures. This approach is described in six steps and compared to widely used methods, which were tested and simulated in CupCarbon simulation environment with different metrics, and shows that the proposed solution is better than similar solutions in terms of a reduction of energy consumption from 11 to 70%, fault tolerance in the transferring of messages from 10 to 80%, and a reduction of cost from 93 to 97%. Manuscript profile
      • Open Access Article

        18 - A Semi-Central Method to Improve Energy Saving in Real Wireless Sensor Networks Using Clustering and Mobile Sinks
        Fatemeh Sadeghi Sepideh Adabi Sahar Adabi
        Applying a hierarchical routing approach based on clustering technique and mobile sink has a great impact on reducing energy consumption in WSN. Two important issues in designing such an approach are cluster head selection and optimal allocation of mobile sinks to criti More
        Applying a hierarchical routing approach based on clustering technique and mobile sink has a great impact on reducing energy consumption in WSN. Two important issues in designing such an approach are cluster head selection and optimal allocation of mobile sinks to critical regions (i.e., regions those have low remaining energy and thus, high risk of energy hole problem). The limited number of mobile sinks should be utilized due to a high cost. Therefore, allocating the limited number of mobile sinks to the high amount of requests received from the critical regions is categorized as a NP-hard problem. Most of the previous studies address this problem by using heuristic methods which are carried out by sensor nodes. However, this type of solutions cannot be implemented in real WSN due to the sensors’ current technology and their limited processing capability. In other words, these are just theoretical solutions. Consequently, a semi-central genetic algorithm based method using mobile sink and clustering technique is proposed in order to find a trade-off between reduction of computation load on the sensors and increasing accuracy. In our method, lightweight computations are separated from heavyweight computations. While, the former computations are carried out by sensors, the latter are carried out by base station. Following activities are done by the authors: 1) cluster head selection by using effective environmental parameters and defining cost function of cluster membership, 2) mathematical modeling of a region’s chance to achieve mobile sink, and 3) designing a fitness function to evaluate the fitness of each allocation of mobile sinks to the critical regions in genetic algorithm. Furthermore, in our activities minimizing the number and length of messages are focused. In summary, the main distinguishing feature of the proposed method is that it can be implemented in real WSN (due to separation of lightweight computations from heavyweight computations) with respect to early mentioned objectives. The simulation results show the better performance of the proposed method compared to comparison bases. Manuscript profile